Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Zhejiang Univ Sci B ; 24(6): 463-484, 2023 Jun 15.
Article in English, Chinese | MEDLINE | ID: covidwho-20238798

ABSTRACT

Coronavirus disease 2019 (COVID-19) has continued to spread globally since late 2019, representing a formidable challenge to the world's healthcare systems, wreaking havoc, and spreading rapidly through human contact. With fever, fatigue, and a persistent dry cough being the hallmark symptoms, this disease threatened to destabilize the delicate balance of our global community. Rapid and accurate diagnosis of COVID-19 is a prerequisite for understanding the number of confirmed cases in the world or a region, and an important factor in epidemic assessment and the development of control measures. It also plays a crucial role in ensuring that patients receive the appropriate medical treatment, leading to optimal patient care. Reverse transcription-polymerase chain reaction (RT-PCR) technology is currently the most mature method for detecting viral nucleic acids, but it has many drawbacks. Meanwhile, a variety of COVID-19 detection methods, including molecular biological diagnostic, immunodiagnostic, imaging, and artificial intelligence methods have been developed and applied in clinical practice to meet diverse scenarios and needs. These methods can help clinicians diagnose and treat COVID-19 patients. This review describes the variety of such methods used in China, providing an important reference in the field of the clinical diagnosis of COVID-19.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , China , COVID-19/diagnosis , COVID-19 Testing
2.
Front Immunol ; 14: 1079960, 2023.
Article in English | MEDLINE | ID: covidwho-2288862

ABSTRACT

Objective: Vaccination is effective tool for preventing and controlling SARS-CoV-2 infections, and inactivated vaccines are the most widely used type of vaccine. In order to identify antibody-binding peptide epitopes that can distinguish between individuals who have been vaccinated and those who have been infected, this study aimed to compare the immune responses of vaccinated and infected individuals. Methods: SARS-CoV-2 peptide microarrays were used to assess the differences between 44 volunteers inoculated with the inactivated virus vaccine BBIBP-CorV and 61 patients who were infected with SARS-CoV-2. Clustered heatmaps were used to identify differences between the two groups in antibody responses to peptides such as M1, N24, S15, S64, S82, S104, and S115. Receiver operating characteristic curve analysis was used to determine whether a combined diagnosis with S15, S64, and S104 could effectively distinguish infected patients from vaccinated individuals. Results: Our findings showed that the specific antibody responses against S15, S64, and S104 peptides were stronger in vaccinators than in infected persons, while responses to M1, N24, S82, and S115 were weaker in asymptomatic patients than in symptomatic patients. Additionally, two peptides (N24 and S115) were found to correlate with the levels of neutralizing antibodies. Conclusion: Our results suggest that antibody profiles specific to SARS-CoV-2 can be used to distinguish between vaccinated individuals and those who are infected. The combined diagnosis with S15, S64, and S104 was found to be more effective in distinguishing infected patients from those who have been vaccinated than the diagnosis using individual peptides. Moreover, the specific antibody responses against the N24 and S115 peptides were found to be consistent with the changing trend of neutralizing antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Antibodies, Viral , Vaccination , Antibodies, Neutralizing , Peptides
3.
Clin Rev Allergy Immunol ; 2021 Sep 18.
Article in English | MEDLINE | ID: covidwho-2228859

ABSTRACT

In December 2019, the COVID-19 pandemic quickly spread throughout China and beyond, posing enormous global challenges. With prompt, vigorous, and coordinated control measures, mainland China contained the spread of the epidemic within two months and halted the epidemic in three months. Aggressive containment strategy, hierarchical management, rational reallocation of resources, efficient contact tracing, and voluntary cooperation of Chinese citizens contributed to the rapid and efficient control of the epidemic, thus promoting the rapid recovery of the Chinese economy. This review summarizes China's prevention and control strategies and other public health measures, which may provide a reference for the epidemic control in other countries.

4.
Virol Sin ; 38(2): 296-308, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2184345

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), an enteropathogenic coronavirus, has catastrophic impacts on the global pig industry. However, there remain no effective drugs against PEDV infection. In this study, we utilized a recombinant PEDV expressing renilla luciferase (PEDV-Rluc) to screen potential anti-PEDV agents from an FDA-approved drug library in Vero cells. Four compounds were identified that significantly decreased luciferase activity of PEDV-Rluc. Among them, niclosamide was further characterized because it exhibited the most potent antiviral activity with the highest selectivity index. It can efficiently inhibit viral RNA synthesis, protein expression and viral progeny production of classical and variant PEDV strains in a dose-dependent manner. Time of addition assay showed that niclosamide exhibited potent anti-PEDV activity when added simultaneously with or after virus infection. Furthermore, niclosamide significantly inhibited the entry stage of PEDV infection by affecting viral internalization rather than viral attachment to cells. In addition, a combination with other small molecule inhibitors of endosomal acidification enhanced the anti-PEDV effect of niclosamide in vitro. Taken together, these findings suggested that niclosamide is a novel antiviral agent that might provide a basis for the development of novel drug therapies against PEDV and other related pathogenic coronavirus infections.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Animals , Swine , Antiviral Agents/pharmacology , Vero Cells , Niclosamide/pharmacology , Niclosamide/therapeutic use , Virus Internalization
6.
Front Immunol ; 13: 913732, 2022.
Article in English | MEDLINE | ID: covidwho-1933696

ABSTRACT

Levels of neutralizing antibodies (NAb) after vaccine against coronavirus disease 2019 (COVID-19) can be detected using a variety of methods. A critical challenge is how to apply simple and accurate methods to assess vaccine effect. In a population inoculated with three doses of the inactivated Sinopharm/BBIBP vaccine, we assessed the performance of chemiluminescent immunoassay (CLIA) in its implementation to detect severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) specific antibodies, as well as the antibody kinetics of healthcare workers throughout the course of vaccination. The antibody levels of NAb, the receptor-binding-domain (RBD) antibodies and IgG peaked one month after the second and remained at a relatively high level for over three months after the booster injection, while IgM and IgA levels remained consistently low throughout the course of vaccination. The production of high-level neutralizing antibodies is more likely when the inoculation interval between the first two doses is within the range of one to two months, and that between the first and booster dose is within 230 days. CLIA showed excellent consistency and correlation between NAb, RBD, and IgG antibodies with the cytopathic effect (CPE) conventional virus neutralization test (VNT). Receiver operating characteristic (ROC) analysis revealed that the optimal cut-off levels of NAb, RBD and IgG were 61.77 AU/ml, 37.86 AU/ml and 4.64 AU/ml, with sensitivity of 0.833, 0.796 and 0.944, and specificity of 0.768, 0.750 and 0.625, respectively, which can be utilized as reliable indicators of COVID-19 vaccination immunity detection.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Neutralization Tests , SARS-CoV-2 , Vaccines, Inactivated
7.
J Med Virol ; 94(11): 5206-5216, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1925946

ABSTRACT

With the global prevalence of COVID-19 and the constant emergence of viral variants, boosters for COVID-19 vaccines to enhance antibody titers in human bodies will become an inevitable trend. However, there is a lack of data on antibody levels and the protective effects of booster injections. This study monitored and analyzed the antibody potency and the antibody responses induced by the booster injection in the subjects who received three vaccine doses. The study was conducted in a multicenter collaboration and recruited 360 healthy adults aged 20-74. Participants received the first, second, and booster doses of inactivated Sinopharm/BBIBP COVID-19 vaccine at 0, 1, and 7 months. Vaccine-induced virus-specific antibody levels (SARS-COV-2-IgA/IgM/IgG) were monitored at multiple time points, surrogate virus neutralization test (sVNT), and the spatial distribution and proportion of immune cells and markers were analyzed using the CyTOF method before vaccination and a month after the second dose. The titers of SARS-CoV-2-IgA/IgM/IgG and neutralizing antibodies increased to a high level in the first month after receiving the second dose of vaccine and declined slowly after that. The antibody levels of SARS-CoV-2-IgG and sVNT were significantly increased at 0.5 months after the induction of the booster (p < 0.05). Despite a downward trend, the antibody levels were still high in the following 6 months. The B cell concentration (in humoral sample) a month after the second injection was significantly reduced compared to that before the vaccine injection (p < 0.05). The proportion of the C01 cell cluster was significantly decreased compared with that before vaccine injection (p < 0.05). Individual cell surface markers showed distinctions in spatial distribution but were not significantly different. This study has shown that serum antibody titer levels will decrease with time by monitoring and analyzing the antibody efficacy and the antibody reaction caused by the booster injection of healthy people who received the whole vaccination (completed three injections). Still, the significant peak of the antibody titer levels after booster highlights the recall immune response. It can maintain a high concentration of antibody levels for a long time, which signifies that the protection ability has been enhanced following the injection of booster immunization. Additionally, CyTOF data shows the active production of antibodies and the change in the immunity environment.


Subject(s)
COVID-19 , Vaccines , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoassay , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2
8.
Allergy ; 77(8): 2404-2414, 2022 08.
Article in English | MEDLINE | ID: covidwho-1853589

ABSTRACT

BACKGROUND: The inactivated Sinopharm/BBIBP COVID-19 vaccine has been widely used in the world and has joined the COVAX vaccine supply program for developing countries. It is also well adapted for usage in low- and middle-income nations due to their low storage requirements. OBJECTIVE: This study aims to report on the kinetics, durability, and neutralizing ability of the induced immunity of the BBIBP vaccine, and the intensified antibody response elicited by the booster. METHODS: A total of 353 healthy adult participants, aged 20-74 years, were recruited in this multicenter study. A standard dose of the BBIBP vaccine was administered (Month 0), followed by a second standard dose (Month 1), and a booster dose (after Month 7). Vaccine-induced virus-specific antibody levels (SARS-CoV-2-IgA/IgM/IgG), conventional virus neutralization test (cVNT), pseudovirus neutralization test (pVNT), and surrogate virus neutralization test (sVNT) were monitored over multiple time points. RESULTS: Neutralizing titers induced by the two doses of inactivated vaccine for COVID-19 peaked at Month 2 and declined to 33.89% at Month 6. Following the booster dose, elevated levels of antibodies were induced for IgA, IgG, and neutralizing antibodies, with neutralizing titer reaching 13.2 times that of before the booster. CONCLUSION: By monitoring the antibody titer levels postvaccination, this study has shown that serum antibody levels will decrease over time, but a notable spike in antibody levels postbooster highlights the anamnestic immune response. This signifies that the protection capability has increased following the injection of booster immunization.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunity, Humoral , Immunization, Secondary , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Vaccination
9.
J Vis Exp ; (181)2022 03 22.
Article in English | MEDLINE | ID: covidwho-1786126

ABSTRACT

White blood cell (WBC) is an important indicator of inflammation in the body, and it can help distinguish between bacterial and viral infections. At present, most primary medical institutions in China have a poor percentage of adoption of blood-testing technology, and a hematology detection system with a high price to performance ratio and easy operation is urgently needed in primary healthcare centers. This paper introduces the principle and operation procedures of a point-of-care testing (POCT) card-based leukocyte analyzer (evaluated system), which was used to detect WBC indexes such as neutrophils, lymphocytes, and intermediate group cells (including eosinophils, basophils, and monocytes) in whole blood. The results from the evaluated system were compared to those from two commercial automatic hematology analyzers (reference system). The correlation and consistency between the evaluated system and the commercial reference systems were analyzed. The results showed that WBC count and number of granulocytes detected by the evaluated and reference systems showed a strong positive correlation (rs = 0.972 and 0.973, respectively), while the number of lymphocytes showed a relatively low correlation (rs = 0.851). A Bland-Altman plot showed that the major difference between the values detected by the evaluated system and the reference systems is within 95% limits of agreement (LoA), indicating that the two systems are in good agreement. In conclusion, the evaluated system has an excellent correlation, robust consistency, and a reliable comparison with the results of the widely used automatic hematology analyzers. It is ideal for WBC detection in primary medical institutions where a full-automatic five-category hematology analyzer is unavailable, especially during the COVID-19 normalized prevention and control period.


Subject(s)
COVID-19 , Hematology , Humans , Leukocyte Count , Leukocytes , Point-of-Care Testing , Reproducibility of Results
10.
Vet Microbiol ; 267: 109391, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1778497

ABSTRACT

Protein tyrosine phosphatase non-receptor type 14 (PTPN14) is a member of the protein tyrosine phosphatase (PTP) family which is a potential tumor suppressor. PTPs modulate the cellular level of tyrosine phosphorylation under normal and pathological conditions. Porcine epidemic diarrhea virus (PEDV) is one of the most important pathogens in the swine industry. Our previous membrane proteomics results showed that PTPN14 was markedly upregulated in PEDV-infected Vero cells. However, its biological roles in PEDV infection have not yet been investigated. In this study, we reported PTPN14 functions as a novel regulator of signal transducer and activator of transcription 3 (STAT3) phosphorylation during PEDV infection. Firstly, PTPN14 was markedly upregulated in PEDV-infected Vero cells with the decrease of STAT3 phosphorylation. Knockdown of PTPN14 or phosphatase inhibitor treatment promoted PEDV proliferation and increased the phosphorylation of STAT3 in Vero cells. On the contrary, overexpression of PTPN14 inhibits viral infection in Vero cells. Moreover, dephosphorylation of STAT3 by PTPN14 might occur in the cytoplasm but not in nucleus. Collectively, our results indicate that PTPN14 plays a negative role in regulating STAT3 activation in PEDV infected Vero cells and demonstrate another layer of regulation in PEDV infection.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Animals , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/physiology , Protein Tyrosine Phosphatases/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Swine , Tyrosine/metabolism , Vero Cells
11.
J Asthma Allergy ; 14: 1185-1195, 2021.
Article in English | MEDLINE | ID: covidwho-1456171

ABSTRACT

PURPOSE: Public health measures during COVID-19 have led to an unprecedented change in social lifestyle which might have an impact on the allergen sensitization in population. We sought to explore the prevalence patterns of serum inhalant and food allergen-specific IgE (sIgE) sensitization and serum total immunoglobulin E (tIgE) level among patients with clinical symptoms of suspected allergic diseases before and during the COVID-19 pandemic in south China. PATIENTS AND METHODS: A large epidemiology study was conducted on the prevalence patterns of sIgE sensitization and serum tIgE level among 13,715 patients with allergic symptoms in south China from 2017 to 2020. Chi-square test and Fisher exact test were used to test statistical significance of allergen sensitization difference among years. Logistic regression was performed to assess the magnitudes of the differences among years by adjusted odds ratios and 95% confidence intervals. RESULTS: The number of hospital visits for patients with suspected allergy symptoms decreased during COVID-19. The positive rates of indoor inhalant allergens (house dust mites, German cockroach, dog dander) and tIgE increased significantly in 2020, while no significant differences were found in food allergens (egg white, milk, soya bean, shrimp) before and during the COVID-19 pandemic. The odds of sIgE positives in indoor inhalant allergens and tIgE positive for 2017 and 2020 were all larger than 1.00. After grouping by age and gender, there were significant differences in the positive rates of indoor inhalant allergens and tIgE when comparing 2020 with 2017. CONCLUSION: The prevalence of sensitization increased significantly to indoor inhalant allergens but not to food allergens in south China during the COVID-19 pandemic.

12.
Cytokine ; 148: 155513, 2021 12.
Article in English | MEDLINE | ID: covidwho-1157231

ABSTRACT

The clinical relevance of Krebs von den Lungen-6 (KL-6) levels in patients with coronavirus disease 2019 (COVID-19) is unclear. This study aimed to evaluate the correlation between KL-6 levels, laboratory parameters, and clinical outcomes. We enrolled 364 patients with confirmed COVID-19 who were hospitalized within 1 week of symptom onset. Their serum KL-6 level was measured on admission. Demographic data, symptoms, comorbidities, and laboratory parameters were recorded at the time of admission. Days to nucleic acid conversion and days of hospitalization were defined as clinical outcomes for evaluating the clinical relevance of serum KL-6 levels in COVID-19. Patients with elevated KL-6 levels were significantly older; had more reported instances of fever, cough, fatigue, and wheezing; and a longer hospital stays than those with normal KL-6 levels; the difference was statistically significant (p < 0.001). Furthermore, KL-6 levels was associated with the days of hospitalization and various laboratory parameters that influence the severity and prognosis of COVID-19. Elevated KL-6 levels have also been shown to be an independent risk factor for prolonged hospitalization. Our data suggest that serum KL-6 levels on admission can serve as an indicator for assessing the clinical outcomes of COVID-19.


Subject(s)
COVID-19/blood , Mucin-1/blood , Aged , COVID-19/virology , Female , Hospitalization , Humans , Male , Middle Aged , Multivariate Analysis , ROC Curve , SARS-CoV-2/physiology , Treatment Outcome
13.
ERJ Open Res ; 7(1)2021 Jan.
Article in English | MEDLINE | ID: covidwho-1076123

ABSTRACT

BACKGROUND: Critically ill coronavirus disease 2019 (COVID-19) patients may suffer persistent systemic inflammation and multiple organ failure, leading to a poor prognosis. RESEARCH QUESTION: To examine the relevance of the novel inflammatory factor heparin-binding protein (HBP) in critically ill COVID-19 patients, and evaluate the correlation of the biomarker with disease progression. STUDY DESIGN AND METHODS: 18 critically ill COVID-19 patients who suffered from respiratory failure and sepsis, including 12 cases who experienced a rapidly deteriorating clinical condition and six cases without deterioration, were investigated. They were compared with 15 age- and sex- matched COVID-19-negative patients with respiratory failure. Clinical data were collected and HBP levels were investigated. RESULTS: HBP was significantly increased in critically ill COVID-19 patients following disease aggravation and tracked with disease progression. HBP elevation preceded the clinical manifestations for up to 5 days and was closely correlated with patients' pulmonary ventilation and perfusion status. INTERPRETATION: HBP levels are associated with COVID-19 disease progression in critically ill patients. As a potential mediator of disease aggravation and multiple organ injuries that are triggered by continuing inflammation and oxygen deficits, HBP warrants further study as a disease biomarker and potential therapeutic target.

14.
Front Mol Biosci ; 7: 605862, 2020.
Article in English | MEDLINE | ID: covidwho-1063336

ABSTRACT

Combination of nucleic acid and specific antibody testing is often required in the diagnosis of COVID-19, but whether patients with different nucleic acid and antibody results have different laboratory parameters, severities and clinical outcomes, has not yet been comprehensively investigated. Thus, according to different groups of nucleic acid and antibody results, we aimed to investigate the differences in demographic characteristics, and laboratory parameters among the different groups and predict their clinical outcomes. In our study, nasopharyngeal swab nucleic acids and antibodies were detected by reverse-transcription polymerase chain reaction and chemiluminescence, respectively. Patients with confirmed COVID-19 with different severities, were divided into the PCR+Ab+, PCR+Ab-, and PCR-Ab+ groups. Demographic characteristics, symptoms, comorbidities, laboratory parameters, and clinical outcomes were compared among the three groups. The correlation of antibodies with laboratory parameters and clinical outcomes was also explored, and antibodies were used to predict the timing of nucleic acid conversion. We found that a total of 364 COVID-19 patients were included in the final analysis. Of these, a total of 184, 37, and 143 patients were assigned to the PCR+Ab+, PCR+Ab-, and PCR-Ab+ groups, respectively. Compared to patients in the PCR+Ab- or PCR- Ab+ groups, patients in the PCR+Ab+ group presented worse symptoms, more comorbidities, more laboratory abnormalities, and worse clinical outcomes (P < 0.05). In addition, the levels of IgG, IgM, and IgA were all significantly correlated with the days of hospitalization, days of PCR turning negative, and multiple laboratory parameters (P < 0.05). Meanwhile, combined IgM, IgA, and IgG predicted the days of PCR turning negative within 1 week. The best performance was achieved when the cut-off values of IgM, IgG, and IgA were 3.2, 1.8 and 0.5, respectively, with a sensitivity of 73% and specificity of 82%. In conclusion, COVID-19 patients who were both positive for nucleic acids and antibodies presented with worse clinical features, laboratory abnormalities, and clinical outcomes. The three specific antibodies were positively correlated with clinical outcomes and most laboratory parameters. Furthermore, antibody levels can predict the time of nucleic acid conversion.

15.
Biosci Trends ; 14(4): 290-296, 2020 Sep 21.
Article in English | MEDLINE | ID: covidwho-609824

ABSTRACT

This study aimed to determine the clinical significance of Krebs von den Lungen-6 (KL-6) in patients with COVID-19, so as to find a marker with high sensitivity, specificity and easy detection to evaluate the lung injury and inflammation of COVID-19. Sixty-three COVID-19 patients and 43 non-COVID-19 patients with similar clinical phenotypes and/or imaging findings were enrolled to test the levels of KL-6 using chemiluminescent immunoassay. In addition, the blood gas, imaging and lymphocyte factors tests were collected from all participants. The data was finally analyzed using multivariate statistical analysis. The results showed KL-6 levels in COVID-19 patients were higher than those in non-COVID-19 patients (P < 0.001). Moreover, the KL-6 levels in severe and critically severe patients were significantly upregulated compared with patients with mild and common type (P < 0.05). Meanwhile, the imaging evaluation showed a significant correlation between KL-6 and pulmonary lesion area (P < 0.05). KL-6 was also found to be significantly correlated with oxygenation index and oxygen partial pressure difference of alveolar artery (PA-aDO2) (Both P < 0.01). In conclusion, KL-6 could be an indicator to evaluate the progression of COVID-19, which is parallel to the level of lung injury and inflammation in patients. Moreover, it can also reflect the pulmonary ventilation function.


Subject(s)
Coronavirus Infections/blood , Lung/diagnostic imaging , Mucin-1/blood , Pneumonia, Viral/blood , Adult , Aged , Betacoronavirus , Blood Gas Analysis , COVID-19 , Case-Control Studies , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/immunology , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/immunology , SARS-CoV-2
16.
Emerg Microbes Infect ; 9(1): 940-948, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-155426

ABSTRACT

The emerging COVID-19 caused by SARS-CoV-2 infection poses severe challenges to global public health. Serum antibody testing is becoming one of the critical methods for the diagnosis of COVID-19 patients. We investigated IgM and IgG responses against SARS-CoV-2 nucleocapsid (N) and spike (S) protein after symptom onset in the intensive care unit (ICU) and non-ICU patients. 130 blood samples from 38 COVID-19 patients were collected. The levels of IgM and IgG specific to N and S protein were detected by ELISA. A series of blood samples were collected along the disease course from the same patient, including 11 ICU patients and 27 non-ICU patients for longitudinal analysis. N and S specific IgM and IgG (N-IgM, N-IgG, S-IgM, S-IgG) in non-ICU patients increased after symptom onset. N-IgM and S-IgM in some non-ICU patients reached a peak in the second week, while N-IgG and S-IgG continued to increase in the third week. The combined detection of N and S specific IgM and IgG could identify up to 75% of SARS-CoV-2 infected patients in the first week. S-IgG was significantly higher in non-ICU patients than in ICU patients in the third week. In contrast, N-IgG was significantly higher in ICU patients than in non-ICU patients. The increase of S-IgG positively correlated with the decrease of C-reactive protein (CRP) in non-ICU patients. N and S specific IgM and IgG increased gradually after symptom onset and can be used for detection of SARS-CoV-2 infection. Analysis of the dynamics of S-IgG may help to predict prognosis.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Nucleocapsid Proteins/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Antibodies, Viral/blood , C-Reactive Protein/analysis , C-Reactive Protein/immunology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Nucleocapsid Proteins , Critical Care/statistics & numerical data , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Kinetics , Male , Middle Aged , Nucleocapsid Proteins/blood , Pandemics , Phosphoproteins , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/blood
SELECTION OF CITATIONS
SEARCH DETAIL